Acta Crystallographica Section E

## Structure Reports

 OnlineISSN 1600-5368

## Zhao-Peng Deng, Shan Gao,* Li-Hua Huo and Hui Zhao

Laboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

## Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
$R$ factor $=0.024$
$w R$ factor $=0.062$
Data-to-parameter ratio $=16.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

## Bis(3,5-dimethylpyrazolium) bis(hydroxonium) $\beta$-octamolybdate(VI) ethanol disolvate

The title compound, $\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{3} \mathrm{O}\right)_{2}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right] \cdot 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, consists of centrosymmetric $\beta-\mathrm{Mo}_{8} \mathrm{O}_{26}{ }^{4-}$ anions, 3,5-dimethylpyrazolium cations, $\mathrm{H}_{3} \mathrm{O}^{+}$cations and ethanol solvent molecules, linked through hydrogen bonding into a twodimensional network.

## Comment

The structures of many compounds containing octamolybdate anions and organic cations have been investigated (Gili et al., 1992; Xu et al., 1999; Rarig et al., 2001). One subset of these are $\beta$-octamolybdate anions combined with organic $N$-heterocyclic cations, including piperidinium ( Xu et al., 1994), imidazolium (Gili et al., 2000), 2-ethylpyridinium (Roman et al., 1982) and 3-methylpyridinium (Roman et al., 1983). To date, only one structure of the $\gamma$-octamolybdate polyanion combined with pyrazolium cations has been reported, in which the cation is coovalently bound to an Mo atom (Gili et al., 1999). Here, we report the synthesis and structure of the title compound, (I), by the reaction of $\mathrm{MoO}_{2}(\mathrm{acac})_{2}$ (acac = acetylacetonate, $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}{ }^{-}$) and 3,5-dimethylpyrazole in ethanol-water solution.


(I)

As illustrated in Fig. 1, compound (I) contains centrosymmetric $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ anions, and 3,5-dimethylpyrazolium and hydroxonium cations, as well as ethanol solvent molecules. The octamolybdate anions show the $\beta$-configuration, which can be bisected into two $\left[\left(\mu_{5}-\mathrm{O}\right)\left(\mathrm{Mo}_{4} \mathrm{O}_{12}\right)\right]^{2-}$ subunits built up about a centre of symmetry. The $\mathrm{Mo}-\mathrm{O}$ bond distances (Table 1) and angles for (I) fall within their expected ranges (Wang et al., 1999).

The hydroxonium atom $\mathrm{O} 1 W$ and the terminal atoms O 9 and O 13 form intermolecular hydrogen bonds, with the $\mathrm{O} \cdots \mathrm{O}$ distances and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angles falling in the ranges 2.773 (4)3.025 (4) $\AA$ and 116 (4)-158 (4) ${ }^{\circ}$, respectively (Table 2). The acute $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angles correlate with bifurcated hydrogen bonds. The hydrogen-bonding network is completed by the 3,5-dimethylpyrazolium cations and ethanol molecules, to give a two-dimensional network (Fig. 2).

Received 20 October 2005 Accepted 2 November 2005 Online 10 November 2005


Figure 1
A view of (I), showing $30 \%$ probability displacement ellipsoids and arbitrary spheres for H atoms. Hydrogen bonds are indicated by dashed lines. The inversion centre at the central point of the octamolybdate anion generates the unlabelled atoms by the symmetry operation $(1-x, 2-y$, $1-z$ ).

## Experimental

An ethanol solution $(15 \mathrm{ml})$ of $\mathrm{MoO}_{2}(\mathrm{acac})_{2}(2 \mathrm{mmol})$ was added dropwise to an aqueous solution ( 15 ml ) containing 3,5-dimethylpyrazole ( 2 mmol ). The resulting mixture was refluxed with stirring for 1.5 h , and then cooled slowly to room temperature and filtered. Brown prismatic crystals of (I) were obtained from the solution after several days. Analysis, calculated for $\mathrm{C}_{14} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{30} \mathrm{Mo}_{8}$ : C 11.15, H 2.41, N 3.72\%; found: C 11.19, H 2.44, N $3.75 \%$.

## Crystal data

$\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{3} \mathrm{O}\right)_{2}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right] \cdot 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
$M_{r}=1507.99$
Triclinic, $P \overline{1}$
$a=8.9910$ (18) £
$b=10.475$ (2) $\AA$
$c=11.441$ (2) $\AA$
$\alpha=93.72$ (3) ${ }^{\circ}$
$\beta=97.55$ (3) ${ }^{\circ}$
$\gamma=111.96(3)^{\circ}$
$V=983.0(4) \AA^{3}$

## Data collection

Rigaku RAXIS-RAPID
diffractometer
$\omega$ scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.462, T_{\text {max }}=0.635$
9637 measured reflections

## $Z=1$

$D_{x}=2.547 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 9165 reflections
$\theta=3.1-27.5^{\circ}$
$\mu=2.57 \mathrm{~mm}^{-1}$
$T=295(2) \mathrm{K}$
Prism, brown
$0.36 \times 0.25 \times 0.18 \mathrm{~mm}$

4427 independent reflections
3936 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-11 \rightarrow 11$
$k=-13 \rightarrow 13$
$l=-14 \rightarrow 14$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.062$
$S=1.10$
4427 reflections
274 parameters
H atoms treated by a mixture of independent and constrained refinement


Figure 2
A packing diagram for (I), viewed along the $c$ axis, with the octamolybdate anions shown as polyhedra. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are denoted by dashed lines and H atoms not involved in hydrogen bonding have been omitted.

Table 1
Selected bond distances ( $(\AA)$.

| Mo1-O4 | 1.742 (2) | Mo3-O2 | 1.697 (2) |
| :---: | :---: | :---: | :---: |
| Mo1-O7 | 2.157 (2) | Mo3-O6 | 1.911 (2) |
| $\mathrm{Mo} 1-\mathrm{O} 7^{\text {i }}$ | 2.365 (2) | Mo3-O7 | 2.327 (2) |
| Mo1-O9 | 1.691 (2) | Mo3-O10 | 1.981 (2) |
| Mo1-O10 | 1.953 (2) | Mo3-O11 ${ }^{\text {i }}$ | 2.342 (2) |
| Mo1-O11 | 1.944 (2) | Mo3-O12 | 1.701 (2) |
| Mo2-O5 | 1.901 (2) | Mo4-O1 | 1.686 (3) |
| Mo2-O7 | 2.334 (2) | Mo4-O3 | 1.711 (3) |
| Mo2-O8 | 1.702 (2) | $\mathrm{Mo} 4-\mathrm{O} 4^{\text {i }}$ | 2.294 (2) |
| $\mathrm{Mo2}-\mathrm{O} 10^{\text {i }}$ | 2.338 (2) | Mo4-O5 | 1.898 (2) |
| Mo2-O11 | 1.979 (2) | Mo4-O6 | 1.942 (2) |
| Mo2-O13 | 1.697 (2) | Mo4-O7 | 2.433 (2) |

Symmetry code: (i) $-x+1,-y+2,-z+1$.

Table 2
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 13$ | 0.85 (3) | 2.29 (4) | 2.773 (4) | 116 (4) |
| $\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 9$ | 0.85 (3) | 2.21 (2) | 3.025 (4) | 158 (4) |
| $\mathrm{O} 1 W-\mathrm{H} 1 W 2 \cdots \mathrm{O} 3^{\text {ii }}$ | 0.85 (4) | 2.11 (4) | 2.914 (4) | 157 (4) |
| $\mathrm{O} 1 W-\mathrm{H} 1 W 3 \cdots \mathrm{O} 2^{\mathrm{iii}}$ | 0.85 (4) | 2.22 (5) | 3.044 (4) | 161 (5) |
| $\mathrm{O} 14-\mathrm{H} 14 \cdots \mathrm{O}^{\text {iv }}$ | 0.85 (4) | 1.84 (3) | 2.654 (4) | 159 (7) |
| $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 14{ }^{\text {v }}$ | 0.86 (4) | 1.85 (4) | 2.693 (6) | 166 (6) |
| $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\text {vi }}$ | 0.87 (5) | 1.84 (5) | 2.708 (4) | 178 (5) |

Symmetry codes: (ii) $-x,-y+1,-z+1$; (iii) $x-1, y, z$; (iv) $-x,-y+2,-z$; (v)
$x+1, y, z+1$; (vi) $-x+1,-y+1,-z+1$.

C-bound H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$, and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, or $1.5 U_{\text {eq }}($ methyl C$)$. The H atoms of the hydroxonium O and pyrazolium N atoms were located in a difference map and refined, with $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ distance restraints of 0.85 (1) and $0.86(1) \AA$, respectively, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O}, \mathrm{N})$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC,

## metal-organic papers

2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant No. 20101003), the Scientific Fund of Remarkable Teachers of Heilongjiang Provincee (grant No. 1054 G036) and Heilongjiang University for supporting this study.

## References

Gili, P., Lorenzo-Luis, P. A., Mederos, A., Arrieta, J. M., Germain, G., Castiñeiras, A. \& Carballo, R. (1999). Inorg. Chim. Acta, 295, 106-114.
Gili, P., Martin-Zarza, P., Martin-Reyes, G., Arrieta, J. M. \& Madariaga, G. (1992). Polyhedron, 11, 115-121.

Gili, P., Núñez, P., Martin-Zarza, P. \& Lorenzo-Luis, P. A. (2000). Acta Cryst. C56, e441-e442.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rarig, R. S. Jr \& Zubieta, J. (2001). Inorg. Chim. Acta, 312, 188-196.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA
Roman, P., Gonzalez-Aguado, M. E., Esteban-Calderon, C., Martinez-Ripoll, M. \& Garcia-Blanco, S. (1983). Z. Kristallogr. 165, 271-276.

Roman, P., Martinez-Ripoll, M. \& Jaud, J. (1982). Z. Kristallogr. 158, 141-147.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, X. J., Kang, B. S., Su, C. Y., Yu, K. B., Zhang, H. X. \& Chen, Z. N. (1999). Polyhedron, 18, 3371-3375.
Xu, J. Q., Wang, R. Z., Yang, G. Y., Xing, Y. H., Li, D. M., Bu, W. M., Ye, L., Fan, Y. G., Yang, G. D., Xing, Y., Lin, Y. H. \& Jia, H. Q. (1999). Chem. Comтии. pp. 983-984.
Xu, X. X., You, X. Z. \& Wang, X. (1994). Polyhedron, 13, 1011-1014.

